Calculates normalized Shannon entropy for gene isoform expression across cells. Higher entropy indicates more diverse isoform usage, lower entropy indicates dominance by fewer isoforms.
Usage
sc_gene_entropy(
sce,
assay = "counts",
gene_col = "gene_id",
alpha = .Machine$double.xmin,
min_counts_per_cell = 5,
isoform_min_pct_cells = 0.05,
isoform_cumulative_pct = 0.95,
min_cell_fraction = 0.25,
threads = 1,
show_progress = interactive()
)
Arguments
- sce
A
SingleCellExperiment
object- assay
Name of assay containing isoform counts (default: "counts")
- gene_col
Column name in rowData containing gene identifiers (default: "gene_id")
- alpha
Pseudocount added to avoid log(0) (default: .Machine$double.xmin)
- min_counts_per_cell
Minimum total gene counts per cell to include (default: 5)
- isoform_min_pct_cells
Minimum fraction of cells expressing each isoform (default: 0.05)
- isoform_cumulative_pct
Keep top isoforms contributing to this cumulative proportion (default: 0.95)
- min_cell_fraction
Minimum fraction of cells with valid entropy per gene (default: 0.25)
- threads
Number of threads for parallel processing (default: 1)
- show_progress
Logical indicating whether to show progress (default: TRUE if interactive)