Skip to contents

Given a vector of read counts, return a vector of weights. The weights could be either the read counts themselves (type = 'counts'), a binary vector of 0s and 1s where 1s are assigned to transcripts with read counts above a threshold (type = 'equal', min_counts = 1000), or a sigmoid function of the read counts (type = 'sigmoid'). The sigmoid function is defined as 1 / (1 + exp(-steepness/inflection * (x - inflection))).

Usage

weight_transcripts(
  counts,
  type = "sigmoid",
  min_counts = 1000,
  inflection_idx = 10,
  inflection_max = 1000,
  steepness = 5
)

Arguments

counts

numeric vector of read counts

type

string, one of 'counts', 'sigmoid', or 'equal'

min_counts

numeric, the threshold for the 'equal' type

inflection_idx

numeric, the index of the read counts to determine the inflection point for the sigmoid function. The default is 10, i.e. the 10th highest read count will be the inflection point.

inflection_max

numeric, the maximum value for the inflection point. If the inflection point according to the inflection_idx is higher than this value, the inflection point will be set to this value instead.

steepness

numeric, the steepness of the sigmoid function

Value

numeric vector of weights

Examples

weight_transcripts(1:2000)
#>    [1] 0.006726173 0.006759661 0.006793313 0.006827132 0.006861119 0.006895273
#>    [7] 0.006929596 0.006964089 0.006998753 0.007033587 0.007068594 0.007103774
#>   [13] 0.007139127 0.007174656 0.007210359 0.007246240 0.007282297 0.007318533
#>   [19] 0.007354947 0.007391541 0.007428316 0.007465273 0.007502412 0.007539735
#>   [25] 0.007577241 0.007614933 0.007652811 0.007690876 0.007729129 0.007767570
#>   [31] 0.007806201 0.007845023 0.007884036 0.007923242 0.007962641 0.008002235
#>   [37] 0.008042024 0.008082009 0.008122191 0.008162571 0.008203151 0.008243930
#>   [43] 0.008284911 0.008326093 0.008367479 0.008409068 0.008450862 0.008492863
#>   [49] 0.008535070 0.008577485 0.008620110 0.008662944 0.008705989 0.008749246
#>   [55] 0.008792716 0.008836400 0.008880300 0.008924415 0.008968748 0.009013299
#>   [61] 0.009058069 0.009103059 0.009148271 0.009193705 0.009239363 0.009285246
#>   [67] 0.009331354 0.009377689 0.009424252 0.009471044 0.009518066 0.009565319
#>   [73] 0.009612804 0.009660523 0.009708476 0.009756666 0.009805092 0.009853756
#>   [79] 0.009902659 0.009951802 0.010001187 0.010050814 0.010100685 0.010150801
#>   [85] 0.010201163 0.010251772 0.010302630 0.010353738 0.010405096 0.010456706
#>   [91] 0.010508570 0.010560688 0.010613062 0.010665693 0.010718582 0.010771730
#>   [97] 0.010825139 0.010878810 0.010932744 0.010986943 0.011041407 0.011096138
#>  [103] 0.011151137 0.011206406 0.011261946 0.011317758 0.011373843 0.011430203
#>  [109] 0.011486839 0.011543752 0.011600945 0.011658417 0.011716170 0.011774206
#>  [115] 0.011832526 0.011891132 0.011950024 0.012009204 0.012068674 0.012128435
#>  [121] 0.012188488 0.012248835 0.012309477 0.012370415 0.012431651 0.012493186
#>  [127] 0.012555022 0.012617161 0.012679603 0.012742349 0.012805403 0.012868764
#>  [133] 0.012932435 0.012996417 0.013060711 0.013125318 0.013190241 0.013255481
#>  [139] 0.013321040 0.013386918 0.013453117 0.013519640 0.013586486 0.013653659
#>  [145] 0.013721159 0.013788989 0.013857148 0.013925640 0.013994466 0.014063627
#>  [151] 0.014133125 0.014202961 0.014273138 0.014343656 0.014414518 0.014485724
#>  [157] 0.014557277 0.014629178 0.014701429 0.014774032 0.014846987 0.014920298
#>  [163] 0.014993965 0.015067990 0.015142375 0.015217121 0.015292231 0.015367706
#>  [169] 0.015443547 0.015519757 0.015596336 0.015673288 0.015750613 0.015828314
#>  [175] 0.015906392 0.015984848 0.016063686 0.016142905 0.016222509 0.016302499
#>  [181] 0.016382877 0.016463645 0.016544804 0.016626356 0.016708304 0.016790648
#>  [187] 0.016873391 0.016956536 0.017040082 0.017124033 0.017208391 0.017293157
#>  [193] 0.017378332 0.017463920 0.017549922 0.017636340 0.017723176 0.017810432
#>  [199] 0.017898109 0.017986210 0.018074737 0.018163691 0.018253075 0.018342891
#>  [205] 0.018433140 0.018523825 0.018614948 0.018706510 0.018798514 0.018890962
#>  [211] 0.018983856 0.019077197 0.019170989 0.019265233 0.019359930 0.019455085
#>  [217] 0.019550697 0.019646770 0.019743305 0.019840306 0.019937773 0.020035709
#>  [223] 0.020134116 0.020232997 0.020332353 0.020432187 0.020532501 0.020633297
#>  [229] 0.020734578 0.020836345 0.020938600 0.021041347 0.021144587 0.021248323
#>  [235] 0.021352556 0.021457290 0.021562526 0.021668266 0.021774514 0.021881271
#>  [241] 0.021988540 0.022096322 0.022204621 0.022313439 0.022422777 0.022532639
#>  [247] 0.022643027 0.022753943 0.022865390 0.022977370 0.023089885 0.023202938
#>  [253] 0.023316532 0.023430668 0.023545349 0.023660578 0.023776357 0.023892689
#>  [259] 0.024009577 0.024127021 0.024245026 0.024363594 0.024482727 0.024602428
#>  [265] 0.024722700 0.024843544 0.024964964 0.025086962 0.025209541 0.025332703
#>  [271] 0.025456451 0.025580788 0.025705716 0.025831239 0.025957357 0.026084075
#>  [277] 0.026211395 0.026339320 0.026467852 0.026596994 0.026726748 0.026857119
#>  [283] 0.026988107 0.027119717 0.027251951 0.027384811 0.027518301 0.027652422
#>  [289] 0.027787179 0.027922574 0.028058609 0.028195288 0.028332613 0.028470588
#>  [295] 0.028609214 0.028748496 0.028888435 0.029029036 0.029170300 0.029312231
#>  [301] 0.029454831 0.029598104 0.029742053 0.029886680 0.030031988 0.030177981
#>  [307] 0.030324662 0.030472033 0.030620098 0.030768859 0.030918320 0.031068484
#>  [313] 0.031219354 0.031370932 0.031523223 0.031676228 0.031829952 0.031984397
#>  [319] 0.032139567 0.032295465 0.032452093 0.032609455 0.032767555 0.032926395
#>  [325] 0.033085978 0.033246309 0.033407389 0.033569223 0.033731814 0.033895164
#>  [331] 0.034059278 0.034224158 0.034389807 0.034556230 0.034723430 0.034891409
#>  [337] 0.035060171 0.035229719 0.035400058 0.035571189 0.035743118 0.035915846
#>  [343] 0.036089378 0.036263716 0.036438865 0.036614828 0.036791608 0.036969209
#>  [349] 0.037147634 0.037326887 0.037506972 0.037687891 0.037869648 0.038052247
#>  [355] 0.038235692 0.038419986 0.038605132 0.038791134 0.038977997 0.039165723
#>  [361] 0.039354316 0.039543780 0.039734118 0.039925334 0.040117432 0.040310415
#>  [367] 0.040504288 0.040699054 0.040894716 0.041091278 0.041288745 0.041487119
#>  [373] 0.041686405 0.041886607 0.042087728 0.042289772 0.042492743 0.042696644
#>  [379] 0.042901480 0.043107255 0.043313972 0.043521635 0.043730248 0.043939815
#>  [385] 0.044150341 0.044361828 0.044574280 0.044787703 0.045002099 0.045217473
#>  [391] 0.045433829 0.045651171 0.045869502 0.046088827 0.046309150 0.046530475
#>  [397] 0.046752805 0.046976146 0.047200500 0.047425873 0.047652268 0.047879690
#>  [403] 0.048108142 0.048337629 0.048568154 0.048799723 0.049032339 0.049266006
#>  [409] 0.049500729 0.049736512 0.049973358 0.050211273 0.050450261 0.050690325
#>  [415] 0.050931470 0.051173701 0.051417021 0.051661435 0.051906948 0.052153563
#>  [421] 0.052401285 0.052650118 0.052900067 0.053151136 0.053403330 0.053656652
#>  [427] 0.053911107 0.054166700 0.054423436 0.054681317 0.054940350 0.055200538
#>  [433] 0.055461886 0.055724398 0.055988079 0.056252934 0.056518966 0.056786181
#>  [439] 0.057054583 0.057324176 0.057594965 0.057866955 0.058140151 0.058414556
#>  [445] 0.058690175 0.058967013 0.059245076 0.059524366 0.059804889 0.060086650
#>  [451] 0.060369653 0.060653903 0.060939405 0.061226163 0.061514182 0.061803466
#>  [457] 0.062094021 0.062385851 0.062678961 0.062973356 0.063269040 0.063566018
#>  [463] 0.063864296 0.064163876 0.064464766 0.064766969 0.065070490 0.065375333
#>  [469] 0.065681505 0.065989009 0.066297851 0.066608036 0.066919567 0.067232451
#>  [475] 0.067546691 0.067862294 0.068179263 0.068497604 0.068817321 0.069138420
#>  [481] 0.069460906 0.069784783 0.070110056 0.070436731 0.070764812 0.071094304
#>  [487] 0.071425213 0.071757542 0.072091298 0.072426485 0.072763109 0.073101173
#>  [493] 0.073440684 0.073781647 0.074124065 0.074467945 0.074813292 0.075160109
#>  [499] 0.075508404 0.075858180 0.076209443 0.076562197 0.076916449 0.077272202
#>  [505] 0.077629463 0.077988235 0.078348525 0.078710337 0.079073677 0.079438549
#>  [511] 0.079804959 0.080172912 0.080542413 0.080913467 0.081286080 0.081660255
#>  [517] 0.082036000 0.082413318 0.082792215 0.083172696 0.083554767 0.083938432
#>  [523] 0.084323696 0.084710566 0.085099045 0.085489139 0.085880854 0.086274194
#>  [529] 0.086669166 0.087065772 0.087464020 0.087863915 0.088265461 0.088668663
#>  [535] 0.089073528 0.089480059 0.089888263 0.090298145 0.090709709 0.091122961
#>  [541] 0.091537906 0.091954550 0.092372897 0.092792953 0.093214723 0.093638212
#>  [547] 0.094063426 0.094490369 0.094919047 0.095349465 0.095781628 0.096215542
#>  [553] 0.096651211 0.097088641 0.097527837 0.097968804 0.098411548 0.098856073
#>  [559] 0.099302385 0.099750489 0.100200390 0.100652094 0.101105604 0.101560928
#>  [565] 0.102018069 0.102477033 0.102937826 0.103400451 0.103864916 0.104331223
#>  [571] 0.104799379 0.105269390 0.105741259 0.106214992 0.106690594 0.107168070
#>  [577] 0.107647426 0.108128667 0.108611797 0.109096821 0.109583745 0.110072574
#>  [583] 0.110563313 0.111055967 0.111550540 0.112047039 0.112545467 0.113045830
#>  [589] 0.113548133 0.114052381 0.114558579 0.115066732 0.115576845 0.116088922
#>  [595] 0.116602969 0.117118991 0.117636992 0.118156978 0.118678953 0.119202922
#>  [601] 0.119728890 0.120256862 0.120786843 0.121318838 0.121852851 0.122388887
#>  [607] 0.122926951 0.123467048 0.124009182 0.124553358 0.125099582 0.125647857
#>  [613] 0.126198188 0.126750580 0.127305038 0.127861566 0.128420169 0.128980852
#>  [619] 0.129543619 0.130108474 0.130675423 0.131244469 0.131815618 0.132388874
#>  [625] 0.132964240 0.133541723 0.134121325 0.134703052 0.135286908 0.135872897
#>  [631] 0.136461024 0.137051293 0.137643708 0.138238273 0.138834994 0.139433873
#>  [637] 0.140034916 0.140638126 0.141243507 0.141851065 0.142460802 0.143072723
#>  [643] 0.143686833 0.144303134 0.144921631 0.145542329 0.146165230 0.146790340
#>  [649] 0.147417661 0.148047198 0.148678955 0.149312935 0.149949142 0.150587580
#>  [655] 0.151228253 0.151871164 0.152516317 0.153163716 0.153813364 0.154465265
#>  [661] 0.155119423 0.155775840 0.156434521 0.157095469 0.157758687 0.158424179
#>  [667] 0.159091948 0.159761997 0.160434330 0.161108950 0.161785859 0.162465063
#>  [673] 0.163146562 0.163830361 0.164516463 0.165204870 0.165895586 0.166588614
#>  [679] 0.167283956 0.167981615 0.168681594 0.169383897 0.170088525 0.170795482
#>  [685] 0.171504770 0.172216392 0.172930350 0.173646647 0.174365286 0.175086268
#>  [691] 0.175809597 0.176535275 0.177263304 0.177993686 0.178726424 0.179461519
#>  [697] 0.180198975 0.180938793 0.181680975 0.182425524 0.183172441 0.183921727
#>  [703] 0.184673386 0.185427419 0.186183828 0.186942614 0.187703779 0.188467325
#>  [709] 0.189233254 0.190001566 0.190772264 0.191545349 0.192320822 0.193098684
#>  [715] 0.193878938 0.194661584 0.195446623 0.196234056 0.197023886 0.197816111
#>  [721] 0.198610735 0.199407757 0.200207178 0.201009000 0.201813222 0.202619846
#>  [727] 0.203428873 0.204240302 0.205054135 0.205870372 0.206689013 0.207510059
#>  [733] 0.208333509 0.209159365 0.209987627 0.210818293 0.211651366 0.212486844
#>  [739] 0.213324728 0.214165017 0.215007711 0.215852811 0.216700315 0.217550224
#>  [745] 0.218402536 0.219257252 0.220114371 0.220973892 0.221835815 0.222700139
#>  [751] 0.223566863 0.224435986 0.225307507 0.226181426 0.227057741 0.227936451
#>  [757] 0.228817554 0.229701051 0.230586939 0.231475217 0.232365883 0.233258936
#>  [763] 0.234154374 0.235052196 0.235952400 0.236854984 0.237759947 0.238667285
#>  [769] 0.239576998 0.240489083 0.241403538 0.242320361 0.243239549 0.244161101
#>  [775] 0.245085013 0.246011284 0.246939910 0.247870889 0.248804218 0.249739894
#>  [781] 0.250677916 0.251618278 0.252560980 0.253506017 0.254453386 0.255403084
#>  [787] 0.256355108 0.257309455 0.258266120 0.259225101 0.260186393 0.261149994
#>  [793] 0.262115899 0.263084104 0.264054606 0.265027401 0.266002483 0.266979851
#>  [799] 0.267959498 0.268941421 0.269925616 0.270912078 0.271900802 0.272891784
#>  [805] 0.273885019 0.274880502 0.275878229 0.276878195 0.277880394 0.278884822
#>  [811] 0.279891473 0.280900343 0.281911425 0.282924715 0.283940206 0.284957894
#>  [817] 0.285977773 0.286999837 0.288024081 0.289050497 0.290079082 0.291109827
#>  [823] 0.292142729 0.293177779 0.294214972 0.295254302 0.296295762 0.297339346
#>  [829] 0.298385046 0.299432858 0.300482772 0.301534784 0.302588886 0.303645070
#>  [835] 0.304703331 0.305763660 0.306826051 0.307890496 0.308956988 0.310025519
#>  [841] 0.311096082 0.312168669 0.313243273 0.314319886 0.315398500 0.316479106
#>  [847] 0.317561698 0.318646266 0.319732803 0.320821301 0.321911750 0.323004144
#>  [853] 0.324098472 0.325194727 0.326292901 0.327392983 0.328494966 0.329598840
#>  [859] 0.330704597 0.331812228 0.332921723 0.334033073 0.335146270 0.336261303
#>  [865] 0.337378163 0.338496841 0.339617327 0.340739612 0.341863685 0.342989537
#>  [871] 0.344117159 0.345246539 0.346377669 0.347510538 0.348645135 0.349781451
#>  [877] 0.350919476 0.352059198 0.353200607 0.354343694 0.355488446 0.356634854
#>  [883] 0.357782907 0.358932594 0.360083903 0.361236825 0.362391347 0.363547460
#>  [889] 0.364705151 0.365864409 0.367025223 0.368187582 0.369351474 0.370516888
#>  [895] 0.371683812 0.372852234 0.374022142 0.375193526 0.376366372 0.377540669
#>  [901] 0.378716405 0.379893568 0.381072145 0.382252125 0.383433495 0.384616244
#>  [907] 0.385800357 0.386985824 0.388172631 0.389360766 0.390550216 0.391740969
#>  [913] 0.392933012 0.394126332 0.395320915 0.396516750 0.397713823 0.398912121
#>  [919] 0.400111631 0.401312340 0.402514234 0.403717301 0.404921526 0.406126897
#>  [925] 0.407333400 0.408541022 0.409749748 0.410959566 0.412170462 0.413382421
#>  [931] 0.414595431 0.415809477 0.417024546 0.418240623 0.419457695 0.420675748
#>  [937] 0.421894767 0.423114739 0.424335649 0.425557483 0.426780227 0.428003867
#>  [943] 0.429228388 0.430453776 0.431680017 0.432907095 0.434134997 0.435363708
#>  [949] 0.436593214 0.437823499 0.439054550 0.440286351 0.441518888 0.442752145
#>  [955] 0.443986109 0.445220765 0.446456097 0.447692090 0.448928731 0.450166003
#>  [961] 0.451403891 0.452642382 0.453881459 0.455121108 0.456361313 0.457602059
#>  [967] 0.458843332 0.460085115 0.461327395 0.462570155 0.463813380 0.465057055
#>  [973] 0.466301165 0.467545694 0.468790627 0.470035948 0.471281643 0.472527696
#>  [979] 0.473774091 0.475020813 0.476267846 0.477515175 0.478762785 0.480010660
#>  [985] 0.481258784 0.482507142 0.483755719 0.485004498 0.486253465 0.487502604
#>  [991] 0.488751898 0.490001333 0.491250893 0.492500562 0.493750326 0.495000167
#>  [997] 0.496250070 0.497500021 0.498750003 0.500000000 0.501249997 0.502499979
#> [1003] 0.503749930 0.504999833 0.506249674 0.507499438 0.508749107 0.509998667
#> [1009] 0.511248102 0.512497396 0.513746535 0.514995502 0.516244281 0.517492858
#> [1015] 0.518741216 0.519989340 0.521237215 0.522484825 0.523732154 0.524979187
#> [1021] 0.526225909 0.527472304 0.528718357 0.529964052 0.531209373 0.532454306
#> [1027] 0.533698835 0.534942945 0.536186620 0.537429845 0.538672605 0.539914885
#> [1033] 0.541156668 0.542397941 0.543638687 0.544878892 0.546118541 0.547357618
#> [1039] 0.548596109 0.549833997 0.551071269 0.552307910 0.553543903 0.554779235
#> [1045] 0.556013891 0.557247855 0.558481112 0.559713649 0.560945450 0.562176501
#> [1051] 0.563406786 0.564636292 0.565865003 0.567092905 0.568319983 0.569546224
#> [1057] 0.570771612 0.571996133 0.573219773 0.574442517 0.575664351 0.576885261
#> [1063] 0.578105233 0.579324252 0.580542305 0.581759377 0.582975454 0.584190523
#> [1069] 0.585404569 0.586617579 0.587829538 0.589040434 0.590250252 0.591458978
#> [1075] 0.592666600 0.593873103 0.595078474 0.596282699 0.597485766 0.598687660
#> [1081] 0.599888369 0.601087879 0.602286177 0.603483250 0.604679085 0.605873668
#> [1087] 0.607066988 0.608259031 0.609449784 0.610639234 0.611827369 0.613014176
#> [1093] 0.614199643 0.615383756 0.616566505 0.617747875 0.618927855 0.620106432
#> [1099] 0.621283595 0.622459331 0.623633628 0.624806474 0.625977858 0.627147766
#> [1105] 0.628316188 0.629483112 0.630648526 0.631812418 0.632974777 0.634135591
#> [1111] 0.635294849 0.636452540 0.637608653 0.638763175 0.639916097 0.641067406
#> [1117] 0.642217093 0.643365146 0.644511554 0.645656306 0.646799393 0.647940802
#> [1123] 0.649080524 0.650218549 0.651354865 0.652489462 0.653622331 0.654753461
#> [1129] 0.655882841 0.657010463 0.658136315 0.659260388 0.660382673 0.661503159
#> [1135] 0.662621837 0.663738697 0.664853730 0.665966927 0.667078277 0.668187772
#> [1141] 0.669295403 0.670401160 0.671505034 0.672607017 0.673707099 0.674805273
#> [1147] 0.675901528 0.676995856 0.678088250 0.679178699 0.680267197 0.681353734
#> [1153] 0.682438302 0.683520894 0.684601500 0.685680114 0.686756727 0.687831331
#> [1159] 0.688903918 0.689974481 0.691043012 0.692109504 0.693173949 0.694236340
#> [1165] 0.695296669 0.696354930 0.697411114 0.698465216 0.699517228 0.700567142
#> [1171] 0.701614954 0.702660654 0.703704238 0.704745698 0.705785028 0.706822221
#> [1177] 0.707857271 0.708890173 0.709920918 0.710949503 0.711975919 0.713000163
#> [1183] 0.714022227 0.715042106 0.716059794 0.717075285 0.718088575 0.719099657
#> [1189] 0.720108527 0.721115178 0.722119606 0.723121805 0.724121771 0.725119498
#> [1195] 0.726114981 0.727108216 0.728099198 0.729087922 0.730074384 0.731058579
#> [1201] 0.732040502 0.733020149 0.733997517 0.734972599 0.735945394 0.736915896
#> [1207] 0.737884101 0.738850006 0.739813607 0.740774899 0.741733880 0.742690545
#> [1213] 0.743644892 0.744596916 0.745546614 0.746493983 0.747439020 0.748381722
#> [1219] 0.749322084 0.750260106 0.751195782 0.752129111 0.753060090 0.753988716
#> [1225] 0.754914987 0.755838899 0.756760451 0.757679639 0.758596462 0.759510917
#> [1231] 0.760423002 0.761332715 0.762240053 0.763145016 0.764047600 0.764947804
#> [1237] 0.765845626 0.766741064 0.767634117 0.768524783 0.769413061 0.770298949
#> [1243] 0.771182446 0.772063549 0.772942259 0.773818574 0.774692493 0.775564014
#> [1249] 0.776433137 0.777299861 0.778164185 0.779026108 0.779885629 0.780742748
#> [1255] 0.781597464 0.782449776 0.783299685 0.784147189 0.784992289 0.785834983
#> [1261] 0.786675272 0.787513156 0.788348634 0.789181707 0.790012373 0.790840635
#> [1267] 0.791666491 0.792489941 0.793310987 0.794129628 0.794945865 0.795759698
#> [1273] 0.796571127 0.797380154 0.798186778 0.798991000 0.799792822 0.800592243
#> [1279] 0.801389265 0.802183889 0.802976114 0.803765944 0.804553377 0.805338416
#> [1285] 0.806121062 0.806901316 0.807679178 0.808454651 0.809227736 0.809998434
#> [1291] 0.810766746 0.811532675 0.812296221 0.813057386 0.813816172 0.814572581
#> [1297] 0.815326614 0.816078273 0.816827559 0.817574476 0.818319025 0.819061207
#> [1303] 0.819801025 0.820538481 0.821273576 0.822006314 0.822736696 0.823464725
#> [1309] 0.824190403 0.824913732 0.825634714 0.826353353 0.827069650 0.827783608
#> [1315] 0.828495230 0.829204518 0.829911475 0.830616103 0.831318406 0.832018385
#> [1321] 0.832716044 0.833411386 0.834104414 0.834795130 0.835483537 0.836169639
#> [1327] 0.836853438 0.837534937 0.838214141 0.838891050 0.839565670 0.840238003
#> [1333] 0.840908052 0.841575821 0.842241313 0.842904531 0.843565479 0.844224160
#> [1339] 0.844880577 0.845534735 0.846186636 0.846836284 0.847483683 0.848128836
#> [1345] 0.848771747 0.849412420 0.850050858 0.850687065 0.851321045 0.851952802
#> [1351] 0.852582339 0.853209660 0.853834770 0.854457671 0.855078369 0.855696866
#> [1357] 0.856313167 0.856927277 0.857539198 0.858148935 0.858756493 0.859361874
#> [1363] 0.859965084 0.860566127 0.861165006 0.861761727 0.862356292 0.862948707
#> [1369] 0.863538976 0.864127103 0.864713092 0.865296948 0.865878675 0.866458277
#> [1375] 0.867035760 0.867611126 0.868184382 0.868755531 0.869324577 0.869891526
#> [1381] 0.870456381 0.871019148 0.871579831 0.872138434 0.872694962 0.873249420
#> [1387] 0.873801812 0.874352143 0.874900418 0.875446642 0.875990818 0.876532952
#> [1393] 0.877073049 0.877611113 0.878147149 0.878681162 0.879213157 0.879743138
#> [1399] 0.880271110 0.880797078 0.881321047 0.881843022 0.882363008 0.882881009
#> [1405] 0.883397031 0.883911078 0.884423155 0.884933268 0.885441421 0.885947619
#> [1411] 0.886451867 0.886954170 0.887454533 0.887952961 0.888449460 0.888944033
#> [1417] 0.889436687 0.889927426 0.890416255 0.890903179 0.891388203 0.891871333
#> [1423] 0.892352574 0.892831930 0.893309406 0.893785008 0.894258741 0.894730610
#> [1429] 0.895200621 0.895668777 0.896135084 0.896599549 0.897062174 0.897522967
#> [1435] 0.897981931 0.898439072 0.898894396 0.899347906 0.899799610 0.900249511
#> [1441] 0.900697615 0.901143927 0.901588452 0.902031196 0.902472163 0.902911359
#> [1447] 0.903348789 0.903784458 0.904218372 0.904650535 0.905080953 0.905509631
#> [1453] 0.905936574 0.906361788 0.906785277 0.907207047 0.907627103 0.908045450
#> [1459] 0.908462094 0.908877039 0.909290291 0.909701855 0.910111737 0.910519941
#> [1465] 0.910926472 0.911331337 0.911734539 0.912136085 0.912535980 0.912934228
#> [1471] 0.913330834 0.913725806 0.914119146 0.914510861 0.914900955 0.915289434
#> [1477] 0.915676304 0.916061568 0.916445233 0.916827304 0.917207785 0.917586682
#> [1483] 0.917964000 0.918339745 0.918713920 0.919086533 0.919457587 0.919827088
#> [1489] 0.920195041 0.920561451 0.920926323 0.921289663 0.921651475 0.922011765
#> [1495] 0.922370537 0.922727798 0.923083551 0.923437803 0.923790557 0.924141820
#> [1501] 0.924491596 0.924839891 0.925186708 0.925532055 0.925875935 0.926218353
#> [1507] 0.926559316 0.926898827 0.927236891 0.927573515 0.927908702 0.928242458
#> [1513] 0.928574787 0.928905696 0.929235188 0.929563269 0.929889944 0.930215217
#> [1519] 0.930539094 0.930861580 0.931182679 0.931502396 0.931820737 0.932137706
#> [1525] 0.932453309 0.932767549 0.933080433 0.933391964 0.933702149 0.934010991
#> [1531] 0.934318495 0.934624667 0.934929510 0.935233031 0.935535234 0.935836124
#> [1537] 0.936135704 0.936433982 0.936730960 0.937026644 0.937321039 0.937614149
#> [1543] 0.937905979 0.938196534 0.938485818 0.938773837 0.939060595 0.939346097
#> [1549] 0.939630347 0.939913350 0.940195111 0.940475634 0.940754924 0.941032987
#> [1555] 0.941309825 0.941585444 0.941859849 0.942133045 0.942405035 0.942675824
#> [1561] 0.942945417 0.943213819 0.943481034 0.943747066 0.944011921 0.944275602
#> [1567] 0.944538114 0.944799462 0.945059650 0.945318683 0.945576564 0.945833300
#> [1573] 0.946088893 0.946343348 0.946596670 0.946848864 0.947099933 0.947349882
#> [1579] 0.947598715 0.947846437 0.948093052 0.948338565 0.948582979 0.948826299
#> [1585] 0.949068530 0.949309675 0.949549739 0.949788727 0.950026642 0.950263488
#> [1591] 0.950499271 0.950733994 0.950967661 0.951200277 0.951431846 0.951662371
#> [1597] 0.951891858 0.952120310 0.952347732 0.952574127 0.952799500 0.953023854
#> [1603] 0.953247195 0.953469525 0.953690850 0.953911173 0.954130498 0.954348829
#> [1609] 0.954566171 0.954782527 0.954997901 0.955212297 0.955425720 0.955638172
#> [1615] 0.955849659 0.956060185 0.956269752 0.956478365 0.956686028 0.956892745
#> [1621] 0.957098520 0.957303356 0.957507257 0.957710228 0.957912272 0.958113393
#> [1627] 0.958313595 0.958512881 0.958711255 0.958908722 0.959105284 0.959300946
#> [1633] 0.959495712 0.959689585 0.959882568 0.960074666 0.960265882 0.960456220
#> [1639] 0.960645684 0.960834277 0.961022003 0.961208866 0.961394868 0.961580014
#> [1645] 0.961764308 0.961947753 0.962130352 0.962312109 0.962493028 0.962673113
#> [1651] 0.962852366 0.963030791 0.963208392 0.963385172 0.963561135 0.963736284
#> [1657] 0.963910622 0.964084154 0.964256882 0.964428811 0.964599942 0.964770281
#> [1663] 0.964939829 0.965108591 0.965276570 0.965443770 0.965610193 0.965775842
#> [1669] 0.965940722 0.966104836 0.966268186 0.966430777 0.966592611 0.966753691
#> [1675] 0.966914022 0.967073605 0.967232445 0.967390545 0.967547907 0.967704535
#> [1681] 0.967860433 0.968015603 0.968170048 0.968323772 0.968476777 0.968629068
#> [1687] 0.968780646 0.968931516 0.969081680 0.969231141 0.969379902 0.969527967
#> [1693] 0.969675338 0.969822019 0.969968012 0.970113320 0.970257947 0.970401896
#> [1699] 0.970545169 0.970687769 0.970829700 0.970970964 0.971111565 0.971251504
#> [1705] 0.971390786 0.971529412 0.971667387 0.971804712 0.971941391 0.972077426
#> [1711] 0.972212821 0.972347578 0.972481699 0.972615189 0.972748049 0.972880283
#> [1717] 0.973011893 0.973142881 0.973273252 0.973403006 0.973532148 0.973660680
#> [1723] 0.973788605 0.973915925 0.974042643 0.974168761 0.974294284 0.974419212
#> [1729] 0.974543549 0.974667297 0.974790459 0.974913038 0.975035036 0.975156456
#> [1735] 0.975277300 0.975397572 0.975517273 0.975636406 0.975754974 0.975872979
#> [1741] 0.975990423 0.976107311 0.976223643 0.976339422 0.976454651 0.976569332
#> [1747] 0.976683468 0.976797062 0.976910115 0.977022630 0.977134610 0.977246057
#> [1753] 0.977356973 0.977467361 0.977577223 0.977686561 0.977795379 0.977903678
#> [1759] 0.978011460 0.978118729 0.978225486 0.978331734 0.978437474 0.978542710
#> [1765] 0.978647444 0.978751677 0.978855413 0.978958653 0.979061400 0.979163655
#> [1771] 0.979265422 0.979366703 0.979467499 0.979567813 0.979667647 0.979767003
#> [1777] 0.979865884 0.979964291 0.980062227 0.980159694 0.980256695 0.980353230
#> [1783] 0.980449303 0.980544915 0.980640070 0.980734767 0.980829011 0.980922803
#> [1789] 0.981016144 0.981109038 0.981201486 0.981293490 0.981385052 0.981476175
#> [1795] 0.981566860 0.981657109 0.981746925 0.981836309 0.981925263 0.982013790
#> [1801] 0.982101891 0.982189568 0.982276824 0.982363660 0.982450078 0.982536080
#> [1807] 0.982621668 0.982706843 0.982791609 0.982875967 0.982959918 0.983043464
#> [1813] 0.983126609 0.983209352 0.983291696 0.983373644 0.983455196 0.983536355
#> [1819] 0.983617123 0.983697501 0.983777491 0.983857095 0.983936314 0.984015152
#> [1825] 0.984093608 0.984171686 0.984249387 0.984326712 0.984403664 0.984480243
#> [1831] 0.984556453 0.984632294 0.984707769 0.984782879 0.984857625 0.984932010
#> [1837] 0.985006035 0.985079702 0.985153013 0.985225968 0.985298571 0.985370822
#> [1843] 0.985442723 0.985514276 0.985585482 0.985656344 0.985726862 0.985797039
#> [1849] 0.985866875 0.985936373 0.986005534 0.986074360 0.986142852 0.986211011
#> [1855] 0.986278841 0.986346341 0.986413514 0.986480360 0.986546883 0.986613082
#> [1861] 0.986678960 0.986744519 0.986809759 0.986874682 0.986939289 0.987003583
#> [1867] 0.987067565 0.987131236 0.987194597 0.987257651 0.987320397 0.987382839
#> [1873] 0.987444978 0.987506814 0.987568349 0.987629585 0.987690523 0.987751165
#> [1879] 0.987811512 0.987871565 0.987931326 0.987990796 0.988049976 0.988108868
#> [1885] 0.988167474 0.988225794 0.988283830 0.988341583 0.988399055 0.988456248
#> [1891] 0.988513161 0.988569797 0.988626157 0.988682242 0.988738054 0.988793594
#> [1897] 0.988848863 0.988903862 0.988958593 0.989013057 0.989067256 0.989121190
#> [1903] 0.989174861 0.989228270 0.989281418 0.989334307 0.989386938 0.989439312
#> [1909] 0.989491430 0.989543294 0.989594904 0.989646262 0.989697370 0.989748228
#> [1915] 0.989798837 0.989849199 0.989899315 0.989949186 0.989998813 0.990048198
#> [1921] 0.990097341 0.990146244 0.990194908 0.990243334 0.990291524 0.990339477
#> [1927] 0.990387196 0.990434681 0.990481934 0.990528956 0.990575748 0.990622311
#> [1933] 0.990668646 0.990714754 0.990760637 0.990806295 0.990851729 0.990896941
#> [1939] 0.990941931 0.990986701 0.991031252 0.991075585 0.991119700 0.991163600
#> [1945] 0.991207284 0.991250754 0.991294011 0.991337056 0.991379890 0.991422515
#> [1951] 0.991464930 0.991507137 0.991549138 0.991590932 0.991632521 0.991673907
#> [1957] 0.991715089 0.991756070 0.991796849 0.991837429 0.991877809 0.991917991
#> [1963] 0.991957976 0.991997765 0.992037359 0.992076758 0.992115964 0.992154977
#> [1969] 0.992193799 0.992232430 0.992270871 0.992309124 0.992347189 0.992385067
#> [1975] 0.992422759 0.992460265 0.992497588 0.992534727 0.992571684 0.992608459
#> [1981] 0.992645053 0.992681467 0.992717703 0.992753760 0.992789641 0.992825344
#> [1987] 0.992860873 0.992896226 0.992931406 0.992966413 0.993001247 0.993035911
#> [1993] 0.993070404 0.993104727 0.993138881 0.993172868 0.993206687 0.993240339
#> [1999] 0.993273827 0.993307149
par(mfrow = c(2, 2))
plot(
  1:2000, weight_transcripts(1:2000, type = 'sigmoid'),
  type = 'l', xlab = 'Read counts', ylab = 'Sigmoid weight'
)
plot(
  1:2000, weight_transcripts(1:2000, type = 'counts'),
  type = 'l', xlab = 'Read counts', ylab = 'Weight by counts'
)
plot(
  1:2000, weight_transcripts(1:2000, type = 'equal'),
  type = 'l', xlab = 'Read counts', ylab = 'Equal weights'
)