Semi-supervised isofrom detection and annotation for long read data. This variant is meant for bulk samples. Specific parameters relating to analysis can be changed either through function arguments, or through a configuration JSON file.
Usage
bulk_long_pipeline(
annotation,
fastq,
outdir,
genome_fa,
minimap2 = NULL,
k8 = NULL,
config_file = NULL
)
Arguments
- annotation
The file path to the annotation file in GFF3 format
- fastq
The file path to input fastq file
- outdir
The path to directory to store all output files.
- genome_fa
The file path to genome fasta file.
- minimap2
Path to minimap2, if it is not in PATH. Only required if either or both of
do_genome_align
anddo_read_realign
areTRUE
.- k8
Path to the k8 Javascript shell binary. Only required if
do_genome_align
isTRUE
.- config_file
File path to the JSON configuration file. If specified,
config_file
overrides all configuration parameters
Value
if do_transcript_quantification
set to true, bulk_long_pipeline
returns a SummarizedExperiment object, containing a count
matrix as an assay, gene annotations under metadata, as well as a list of the other
output files generated by the pipeline. The pipeline also outputs a number of output
files into the given outdir
directory. These output files generated by the pipeline are:
- transcript_count.csv.gz
- a transcript count matrix (also contained in the SummarizedExperiment)
- isoform_annotated.filtered.gff3
- isoforms in gff3 format (also contained in the SummarizedExperiment)
- transcript_assembly.fa
- transcript sequence from the isoforms
- align2genome.bam
- sorted BAM file with reads aligned to genome
- realign2transcript.bam
- sorted realigned BAM file using the transcript_assembly.fa as reference
- tss_tes.bedgraph
- TSS TES enrichment for all reads (for QC)
if do_transcript_quantification
set to false, nothing will be returned
Details
By default FLAMES use minimap2 for read alignment. After the genome alignment step (do_genome_align
), FLAMES summarizes the alignment for each read by grouping reads
with similar splice junctions to get a raw isoform annotation (do_isoform_id
). The raw isoform
annotation is compared against the reference annotation to correct potential splice site
and transcript start/end errors. Transcripts that have similar splice junctions
and transcript start/end to the reference transcript are merged with the
reference. This process will also collapse isoforms that are likely to be truncated
transcripts. If isoform_id_bambu
is set to TRUE
, bambu::bambu
will be used to generate the updated annotations.
Next is the read realignment step (do_read_realign
), where the sequence of each transcript from the update annotation is extracted, and
the reads are realigned to this updated transcript_assembly.fa
by minimap2. The
transcripts with only a few full-length aligned reads are discarded.
The reads are assigned to transcripts based on both alignment score, fractions of
reads aligned and transcript coverage. Reads that cannot be uniquely assigned to
transcripts or have low transcript coverage are discarded. The UMI transcript
count matrix is generated by collapsing the reads with the same UMI in a similar
way to what is done for short-read scRNA-seq data, but allowing for an edit distance
of up to 2 by default. Most of the parameters, such as the minimal distance to splice site and minimal percentage of transcript coverage
can be modified by the JSON configuration file (config_file
).
The default parameters can be changed either through the function
arguments are through the configuration JSON file config_file
. the pipeline_parameters
section specifies which steps are to be executed in the pipeline - by default, all
steps are executed. The isoform_parameters
section affects isoform detection - key
parameters include:
Min_sup_cnt
which causes transcripts with less reads aligned than it's value to be discarded
MAX_TS_DIST
which merges transcripts with the same intron chain and TSS/TES distace less than
MAX_TS_DIST
strand_specific
which specifies if reads are in the same strand as the mRNA (1), or the reverse complemented (-1) or not strand specific (0), which results in strand information being based on reference annotation.
See also
sc_long_pipeline()
for single cell data,
SummarizedExperiment()
for how data is outputted
Examples
# download the two fastq files, move them to a folder to be merged together
temp_path <- tempfile()
bfc <- BiocFileCache::BiocFileCache(temp_path, ask = FALSE)
file_url <-
"https://raw.githubusercontent.com/OliverVoogd/FLAMESData/master/data"
# download the required fastq files, and move them to new folder
fastq1 <- bfc[[names(BiocFileCache::bfcadd(bfc, "Fastq1", paste(file_url, "fastq/sample1.fastq.gz", sep = "/")))]]
fastq2 <- bfc[[names(BiocFileCache::bfcadd(bfc, "Fastq2", paste(file_url, "fastq/sample2.fastq.gz", sep = "/")))]]
annotation <- bfc[[names(BiocFileCache::bfcadd(bfc, "annot.gtf", paste(file_url, "SIRV_isoforms_multi-fasta-annotation_C_170612a.gtf", sep = "/")))]]
genome_fa <- bfc[[names(BiocFileCache::bfcadd(bfc, "genome.fa", paste(file_url, "SIRV_isoforms_multi-fasta_170612a.fasta", sep = "/")))]]
fastq_dir <- paste(temp_path, "fastq_dir", sep = "/") # the downloaded fastq files need to be in a directory to be merged together
dir.create(fastq_dir)
file.copy(c(fastq1, fastq2), fastq_dir)
#> [1] TRUE TRUE
unlink(c(fastq1, fastq2)) # the original files can be deleted
outdir <- tempfile()
dir.create(outdir)
se <- bulk_long_pipeline(
annotation = annotation, fastq = fastq_dir, outdir = outdir, genome_fa = genome_fa,
config_file = create_config(outdir, type = "sc_3end", threads = 1, no_flank = TRUE)
)
#> Writing configuration parameters to: /tmp/RtmpqmWKMU/filecd676b6b1d05/config_file_52583.json
#> #### Input parameters:
#> {
#> "pipeline_parameters": {
#> "seed": [2022],
#> "threads": [1],
#> "do_barcode_demultiplex": [true],
#> "do_gene_quantification": [true],
#> "do_genome_alignment": [true],
#> "do_isoform_identification": [true],
#> "bambu_isoform_identification": [false],
#> "multithread_isoform_identification": [false],
#> "do_read_realignment": [true],
#> "do_transcript_quantification": [true],
#> "oarfish_quantification": [true]
#> },
#> "barcode_parameters": {
#> "max_bc_editdistance": [2],
#> "max_flank_editdistance": [8],
#> "pattern": {
#> "primer": ["CTACACGACGCTCTTCCGATCT"],
#> "BC": ["NNNNNNNNNNNNNNNN"],
#> "UMI": ["NNNNNNNNNNNN"],
#> "polyT": ["TTTTTTTTT"]
#> },
#> "strand": ["-"],
#> "TSO_seq": ["AAGCAGTGGTATCAACGCAGAGTACATGGG"],
#> "TSO_prime": [5],
#> "cutadapt_minimum_length": [10],
#> "full_length_only": [false]
#> },
#> "isoform_parameters": {
#> "generate_raw_isoform": [false],
#> "max_dist": [10],
#> "max_ts_dist": [100],
#> "max_splice_match_dist": [10],
#> "min_fl_exon_len": [40],
#> "max_site_per_splice": [3],
#> "min_sup_cnt": [5],
#> "min_cnt_pct": [0.001],
#> "min_sup_pct": [0.2],
#> "bambu_trust_reference": [true],
#> "strand_specific": [0],
#> "remove_incomp_reads": [4],
#> "downsample_ratio": [1]
#> },
#> "alignment_parameters": {
#> "use_junctions": [true],
#> "no_flank": [true]
#> },
#> "realign_parameters": {
#> "use_annotation": [true]
#> },
#> "transcript_counting": {
#> "min_tr_coverage": [0.4],
#> "min_read_coverage": [0.4]
#> }
#> }
#> gene annotation: /tmp/RtmpqmWKMU/filecd67c26b5b0/cd671bac426c_SIRV_isoforms_multi-fasta-annotation_C_170612a.gtf
#> genome fasta: /tmp/RtmpqmWKMU/filecd67c26b5b0/cd67697846a9_SIRV_isoforms_multi-fasta_170612a.fasta
#> input fastq files: /tmp/RtmpqmWKMU/filecd67c26b5b0/fastq_dir/cd6712d7a3b_sample2.fastq.gz
#> /tmp/RtmpqmWKMU/filecd67c26b5b0/fastq_dir/cd67276d6059_sample1.fastq.gz
#> output directory: /tmp/RtmpqmWKMU/filecd676b6b1d05
#> minimap2 path:
#> k8 path:
#> #### Aligning reads to genome using minimap2
#> Aligning sample cd6712d7a3b_sample2 ...
#> 06:53:49 AM Mon Jan 06 2025 minimap2_align
#> Aligning sample cd67276d6059_sample1 ...
#> 06:53:53 AM Mon Jan 06 2025 minimap2_align
#> 06:53:56 AM Mon Jan 06 2025 find_isoform
#> #### Realign to transcript using minimap2
#> Realigning sample cd6712d7a3b_sample2 ...
#> 06:53:57 AM Mon Jan 06 2025 minimap2_realign
#> file renamed to cd6712d7a3b_sample2_realign2transcript.bam
#> Warning: cannot remove file '/tmp/RtmpqmWKMU/filecd676b6b1d05/cd6712d7a3b_sample2_tmp_align.bam', reason 'No such file or directory'
#> Realigning sample cd67276d6059_sample1 ...
#> 06:53:57 AM Mon Jan 06 2025 minimap2_realign
#> file renamed to cd67276d6059_sample1_realign2transcript.bam
#> Warning: cannot remove file '/tmp/RtmpqmWKMU/filecd676b6b1d05/cd67276d6059_sample1_tmp_align.bam', reason 'No such file or directory'
#> #### Generating transcript count matrix